

Universidade Federal de Pernambuco

Oceanic Indices to Forecast the Seasonal Rainfall Over the Northern Northeast of Brazil

G. Aubains Hounsou-Gbo

J. Servain, M. Araujo, E. S. Martins, B. Bourlès, and G. Caniaux

INTRODUCTION

The climate of Northeast Brazil is largely semiarid, with notable variability in seasonal and interannual rainfall.

The seasonal rainfall of the Northern Northeast Brazil (**NNEB**) is strongly influenced by latitudinal excursion of the Intertropical Convergence Zone (ITCZ)

OBJECTIVE

Identify oceanic surface and subsurface variables in the tropical Atlantic that can be used to forecast seasonal rainfall of NNEB focusing on wettest and driest years

DATA AND METHODS

Monthly rainfall observations 1974-2008 at Fortaleza-CE (NNEB)

Fortaleza (NNEB): Rainy season FMAM Core rainy season **Mar-Apr** Driest months **Oct-Nov**

ITCZ latitudinal position along 30°W:

- Southernmost in FMA
- Northernmost in JAS

DATA AND METHODS

Monthly pseudo wind-stress (**PWS**) from Servain's data set **SST** and Latent Heat Flux (**LHF**) from OAFlux 1974-2008

DATA AND METHODS

SODA Reanalysis 1974-2008

Isothermal layer depth (ILD) Density mixed layer depth (MLD) Barrier layer thickness (BLT) BLT = ILD-MLD

Ocean heat content (**OHC**) integrated within the ILD

(cf. de Boyer Montégut, 2007)

RAINFALL INTERANNUAL VARIABILITY

March-April normalized rainfall anomalies (blue bar) at Fortaleza for 1974-2008

Fortaleza (NNEB) - 20 Strong Episodes

Bi-monthly evolution of oceanic surface variables anomalies in NWEA for the 20 selected episodes at Fortaleza

8 wettest years

Strengthening of **PWSy** and **LHF** anomalies and negative **SST** anomaly

12 driest years

Weakening of **PWSy** and **LHF** anomalies and positive **SST** anomaly

Bi-monthly evolution of oceanic subsurface variables anomalies in NWEA for the 20 selected episodes at Fortaleza

8 wettest years

Thin **BL** within the ILD →mean Low **OHC**

ILD = MLD+BLT

12 driest years

Thick **BL** within the ILD →mean High **OHC**

Spatial distribution of the difference between the composites of 12 driest and 8 wettest years

OND: Oct-Nov corresponding to the **12 driest years** ONw: Oct-Nov corresponding to the **8 wettest years**

Difference well marked in NWEA for both BLT and OHC. Interestingly, the PIRATA buoy at 4°N-38°W is located in the region of strongest values.

The composite of 12 driest and 8 wettest years at 4°N-38°W PIRATA buoy location

∆BLT [m] $20^{\circ}N$ ON_D-ON_W 10[°]N 0° $10^{\circ}S$ 20°S 45°W 60°W 30°W nº 15° 15°W -16 -4 12 16

Shallow ILD (50m) in ONw and deep ILD (65m) in OND

Thin BLT (6m) in ONw and thick BLT (16m) in ONp at 4°N-38°W PIRATA buoy location

8 wettest years

12 driest years

28

SODA	PIRATA	PIRATA	PIRATA	PIRATA
This Study	At Present	At Present	Proposed	Investment
T/C	Т	T/C	T/C	T/C
		1	1	
5				
			10	10
15				
		20	20	
25				
			30	30
35				
		40	40	
46				
			50	50
57				
	60		60	60
70			70	70
82	80		80	80
			90	90
96				
	100		100	100
112				
		120	120	
129				
	140		140	140
148				

In order to get access to the necessary oceanic observations in real time

Conclusion

NNEB strong variability (March-April Rainfall)

- Strong influence of the Wind-Evaporation-SST (WES) Mechanism (cf. meridional SST and wind dipoles)
- Progressive predictive effect of anomalies of PWSy, LHF and SST in the NWEA from Nov-Dec up to Mar-Apr
- BLT and OHC perturbations during the last months of the year can be used as a valuable indicator in forecasting especially wet or dry events over the NNEB.
- Proposal for implementing new T/C sensors on three PIRATA buoys within the NWEA

Acknowledgments

- FUNCEME (Project BTT Funceme/Funcap, Edital 10/2013) is thanked for the support of JS at Fortaleza.
- CNPq is thanked for the Project "Mudanças Climáticas no Atlântico Tropical" (MUSCAT), Process No.: 400544/2013-0, which is including in the Project INCT AmbTropic.
- This work makes also part of the Project CNPq-IRD PILOTE.