Why is there a Front North of the Atlantic Cold Tongue ?

H. Giordani, G. Caniaux, A. Voldoire

Introduction

•In summer, the equatorial cold tongue is well developped south of the equator with a front across the equator

•In the equatorial front meridional SST gradients reach ~2°C/20 km [Lefèvre *et al.*, 2009]

•This front influences the circulation in the MABL, coastal precipitation and the west African monsoon jump [Thorncroft *et al.*, 2011; Caniaux *et al.*, 2011; Nguyen *et al.*, 2011]

Influence of the CT on the Atmosphere

- 1. In B, SSTs cool as soon as winds strengthen near 3°S
- 2. In B, cooling increased in May-June
- 3. Sharp SST gradients between A and B
- 4. SST gradients relax in August-September
- 1. S.H. winds increase and reach the N.H., never the contrary
- As soon as a SST gradient threshold is reached, winds:

 (1) weaken S of the equator;
 (2) strengthen N of the equator up to the continent in July-August

Mixed-Layer Heat Budget - Seasonal Scale Giordani et al. (2013)

TURBULENT MIXING

Differential cooling induces a SST front on the Equator ?

The Atlantic Cold Tongue - EGEE 2006 Giordani & Caniaux (2011)

AMMA/EGEE P3D Model (Herve Giordani)

SST PIRATA (0°N;0°E) in 2006

Role of the dynamics in frontogenesis ?

Frontogenesis Giordani and Caniaux (2014)

Frontogenetic $\frac{1}{2} \frac{d}{dt} (\vec{\nabla} \theta)^2 = \vec{Q}_h \cdot \vec{\nabla} \theta + \vec{Q}_d \cdot \vec{\nabla} \theta$

Heat forcing:
$$\vec{Q}_h$$
Dynamic forcing: \vec{Q}_d $Q_{hx} = \frac{\partial}{\partial x} \left(F_{sol} \frac{\partial I(z)}{\partial z} - \frac{\partial \overline{w'\theta'}}{\partial z} \right)$ $Q_{dx} = -\left(\frac{\partial u}{\partial x} \frac{\partial \theta}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial \theta}{\partial y} + \frac{\partial w}{\partial x} \frac{\partial \theta}{\partial z} \right)$ $Q_{hy} = \frac{\partial}{\partial y} \left(F_{sol} \frac{\partial I(z)}{\partial z} - \frac{\partial \overline{w'\theta'}}{\partial z} \right)$ $Q_{dy} = -\left(\frac{\partial v}{\partial y} \frac{\partial \theta}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial \theta}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial \theta}{\partial z} \right)$

PREFACE PIRATA CLIVAR TAV Meeting

7/21

Frontogenesis from a regional PE model

Giordani and Caniaux (2014)

•Frontogenesis in the longitude band [15°W-5°E] and in the latitude band [1°S-1°N]

•Westward of 15°W the frontogenesis vanishes because of weaker SST gradients due to TIW

Heat forcing

 TURBULENT MIXING

 Meeting
 herve.giordani@meteo.fr
 Cape Town, South Africa, August 24-28, 2015

Low-High Frequency Components

PREFACE PIRATA CLIVAR TAV Meeting

herve.giordani@meteo.fr

0

400 5°N 200 0° 5°S -200 Low frequency dynamic forcing 10°S 400 30°W 0°E 10°E 20°W 10°W 1200 5°N 800 400 0° n -400 5°S High frequency dynamic forcing -800 10°S 1200 30°W 20°W 10°W 0°E 10°E

•The low frequency heat forcing is weakly frontogenetic

 The high frequency component of the dynamical forcing is the strongest frontogenetic term

•The dynamic forcing is mainly supported by the convergence between the nSEC and the GC

Origin of the dynamical forcing

SST and dynamic forcing term

PREFACE PIRATA CLIVAR TAV Meeting

herve.giordani@meteo.fr

Frontogenesis

In case of meridional gradients

$$\frac{1}{2} \frac{d}{dt} \left(\vec{\nabla} \ \theta \ \right)^2 \approx \left[\frac{\partial}{\partial y} \left(F_{sol} \ \frac{\partial I(z)}{\partial z} - \frac{\partial \overline{w'T'}}{\partial z} \right) \frac{\partial T}{\partial y} \right] \\ - \left(\frac{\partial u}{\partial y} \frac{\partial T}{\partial x} + \left(\frac{\partial v}{\partial y} \frac{\partial T}{\partial y} \right) + \frac{\partial w}{\partial y} \frac{\partial T}{\partial z} \right) \frac{\partial T}{\partial y} \right]$$

Heat forcing term

Surf. fluxes

Dynamic forcing term

PREFACE PIRATA CLIVAR TAV Meeting

herve.giordani@meteo.fi

Cape Town, South Africa, August 24-28, 2015

PREFACE PIRATA CLIVAR TAV Meeting

PV in TIW

PV (S-1*E10)

q < 0 in frontal/eddy areas where $q_h \ll 0$

15/21

Destruction of Potential Vorticity

PV destruction:

- Wind oriented down-front
- Buoyancy loss from the ocean to the atmosphere

PV in TIW

JPV STRESS

PV (S-1*E10)

Conclusions

•The heat forcing term associated with fluxes is frontolytic (*i.e.* weakening of the equatorial front)

•Low-frequency heat forcing is frontogenetic and may initiate the equatorial front, which is largely amplified and maintained by the dynamic forcing

•Dynamic forcing is the leading term of frontogenesis: it is driven by the meridional convergence between the Guinea Current and the South Equatorial Current

Conceptual Scheme

Conclusions

•Intra-thermocline bolus/eddy of low-PV can modify stratification, circulation, vertical/lateral mixing and ML heat/salt budgets

•How can we document this with data (PIRATA buoys, Gliders, CTDs ...) ?

Conceptual Scheme

