

CLIVAR-PIRATA-PREFACE

Tropical Atlantic Variability Conference

Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa

I. Gómara (1,2), E. Mohino (1) T. Losada (1), M. Domínguez (1,2) B. Rodríguez-Fonseca (1,2)

(1) Department of Geophysics and Meteorology Complutense University of Madrid

(2) Institute of Geosciences, UCM-CSIC

Motivation and Objectives

The West African Monsoon (WAM)

- Most prominent climate feature of Western Africa during boreal summer (Rowell 2001; Janicot et al. 2001)
- SLP/T gradient between Sahara and Gulf of Guinea → seasonal precipitation (Janicot et al. 2011; Mohino et al. 2011)
- Highly determines socio-economic development of West Africa communities (Cook 2008; Yaka et al. 2008)

WAM Interannual variability: year to year

- ENSO+: Increased subsidence over WA →
 decreased pcp (Joly and Voldoire 2009)
- Eq. Mode (-): Sahara/Guinea SLP/T gradient increased → enhanced/decreased pcp over Guinea/Sahel (Zebiak 1993)
- Combined effect after 1970s → homogeneous rainfall mode (Rodríguez Fonseca et al. 2011; Losada et al. 2012)

West Africa

WAM modelization

- High resolution
- Fine-scale processes resolved (e.g., convection, soil-atmosphere exchange etc.)

Data and Methodology

Observations

Data set	Variables	Resolution	Period	Reference
HadISST	SST	JAS/1x1	1979-2004	Rayner et al. 2013
GPCP	Precipitation	JAS/2.5x2.5	1979-2004	Huffman et al. 2009

GCM and RCM data (Taylor et al. 2012; Giorgi et al. 2009)

Historical CMIP5 GCMs	SM2	-CM5	TH r12	SM2M	VI2-ES)C5	M-LR	M1-M
CORDEX-Africa RCMs	CanE	CNRM	EC-EAR	GFDL-E	HadGE	MIRO	MPI-ES	NorESI
SMHI-RCA4	X	X	X	X	X	Х	X	X

CORDEX Africa Domain

1. GCMs: 8 different GCM simulations

2. GCMs-RCA4: Same RCM (SMHI-RCA4) driven by 8 different GCMs – lateral boundary conditions

SEA SURFACE TEMPERATURE BASED STATISTICAL SEASONAL FORECAST MODEL (S4CAST)

(Suárez-Moreno & Rodríguez-Fonseca 2015)

MAXIMUM COVARIANCE ANALYSIS (MCA)

Calculation of the leading co-variabity modes between two TIME-VARYING fields (Bretherton et al. 1992)

PREDICTOR: Anomalous SSTs (linear trend removed) PREDICTAND: Anomalous Precipitation

#MODE 1: SST homogeneous map

#MODE 1: PCP heterogeneous map

Maximum covariance

Results

Seasonal Precipitation biases

GPCP - JAS

Blue – mean pcp (mm/day) Contours – std pcp (mm/day)

Zonal band of pcp (Folland et al. 1986)

Ensemble bias - GCMs

Blue – mean pcp bias (mm/day) Contours – mean pcp std (mm/day) Stippling: Same bias sign in all GCMs

Too southward ITCZ due to SST biases (Cook and Vizy 2006; Richter and Xie, 2008)

Ensemble bias – GCMs-RCA4

Blue – mean pcp bias (mm/day) Contours – mean pcp std (mm/day) Stippling: Same bias sign in all GCMs

Dry bias over central Africa. Narrower/stronger band of overestimated pcp south of Guinea

RCA4 Added Value (Di Luca et al. 2013; Meque and Abiodun 2015)

$$AV = (X_{GCM} - X_{OBS})^2 - (X_{RCA4} - X_{OBS})^2$$

Colors – ensemble AV in average pcp (mm2/day2) Contours – ensemble AV in pcp std (mm/day) Stippling: 75% of individual models giving same AV sign

I. Gómara

MOST PROMINENT WAM TELECONNECTIONS IN OBS, GCMs AND GCMs-RCA4

MCA Leading Modes (JAS 1979-2004)

Colors: SST/PCP regressed on U (K / mm day-1) Stippling: Obs M. Carlo test 95%; Simulations 7/8 Results

GPCP

Ensemble Added Value Maps

Colors – ensemble mean AV in the representation of the ENSO-WAM teleconnection (mm2/day2) Contours – Number of simulations with positive AV at each grid point (mm/day)

NO ROBUST ADDED VALUE IS PROVIDED BY RCA4 IN THE REPRESENTATION OF WAM TELECONNECTIONS

Main Conclusions

- 1. RCA4 simulations improve climatological values of the West African Monsoon (WAM) inland over West Africa
- 2. GCMs alone are able to capture the ENSO influence on the WAM but the strenght of the simulated signal is too weak
- 3. RCA4 simulations do not improve the representation of the most prominent WAM teleconnections: El Niño Southern Oscillation and the Atlantic Equatorial Mode.

Future Work

• Assess for uncertainties in RCM architecture additional to the lateral boundary conditions: MPI-ESM-LR driving 4 different RCMs (CORDEX)

THANK YOU FOR YOUR ATTENTION

TROPICAL ATLANTIC VARIABILITY GROUP (TROPA)

TROPA UCM

E RESEARCH MULCLIVAR PROJECT ACADEMICS DISSEMINATION AND EDUCATION COOPERATION MEMBERS PUBLICATIONS CONTACT COLLABORATORS NEWSIII

...........

WELCOME TO THE TROPA GROUP WEBPAGE OF UNIVERSIDAD COMPLUTENSE DE MADRID UCM

TROPA-UCM GROUP BELONGS TO THE CONSOLIDATED UCM RESEARCH GROUP MICROMETEOROLOGY AND CLIMATE VARIABILITY OF THE GEOPHYSICS AND METEOROLOGY DEPARTMENT. TROPA RESEARCHS ON TROPICAL AND EXTRATROPICAL CLIMATE VARIABILITY, MAINLY IN THE ROLE OF THE TROPICAL OCEANS IN THE ATLANTIC REGION, INCLUDING TROPICAL AND EXTRATROPICAL AREAS.WE ARE INTERESTED IN THE IMPACTS ON PRECIPITATION, TELECONNECTION MECHANISMS AND OCEAN-ATMOSPHERE INTERACTIONS.WE WORK ALSO IN EDUCATION AT ALL THE LEVELS, TRAYING TO BRING METEROLOGY AND OCEANOGRAPHY CULTURE TO SOCIETY. WE ARE INVOLVED IN COOPERATION WITH WEST AFRICAN AND WE ARE OPEN TO COLLABORATE WITH STUDENTS, TEACHERS, PROFESSORS AND RESEARCHERS ALL OVER THE WORLD.

tropa.fis.ucm.es

Additional Material

CORDEX DOMAIN AND SEASONAL PRECIPITATION IN OBSERVATIONS (JAS - mm/day)

Fig. S1: (a) CORDEX Africa simulation domain [24.64°W-60.28°E, 45.76°S-42.24°N] and 1-degree resolution elevation (in m). Source: NCAR Terrain Base (TBASE) dataset (b) Mean (shadings; mm day⁻¹) and standard deviation (contours; mm day⁻¹) of MERRA JAS seasonal precipitation (1979-2004). Rectangles denote West-Africa North (WA-N) and West-Africa South (WA-S) regions. (c) Difference between MERRA and GPCP databases in mean (shadings) and standard deviation (contours) for JAS 1979-2004.

Fig. S2: (a)-(h) Biases of GCM historical simulations (8 models in total, cf. Table 1) with respect to the GPCP database (period 1979-2004). Differences in mean values are given in colors (units - mm day⁻¹). Differences in standard deviation are provided in contours (units - mm day⁻¹). Rectangles denote West-Africa North (WA-N) and West-Africa South (WA-S) regions, respectively. (i)-(p) Same as (a)-(h) but for SMHI-RCA4 driven by 8 GCMS. (q)-(t) Same as (a)-(h) but for 4 different RCMs driven by MPI-ESM-LR.

Fig. S3: (a)-(h) Added value maps (colors, in mm² day⁻² std⁻²) for the individual model members (RCA4 vs. GCMs) in representing JAS mean precipitation (colors, in mm² day⁻²) and standard deviation (contours, in mm² day⁻²) (1979-2004). Positive RCM added values in mean are highlighted with stippling. (i)-(l) Same as (a)-(b) but for the nested RCMs onto MPI (MPI-RCMs vs. MPI).

Fig. S4: (a)-(p) Pairs of homogeneous/heterogeneous regression maps for the leading mode of each GCM individual simulation between SST anomalies (predictor) from the equatorial Pacific [110°E-80°W, 20°S-20°N] and precipitation anomalies (predictand) over West Africa [20°W-30°E, 0°-20°N]. Period: JAS 1979-2004. Explained variance provided in % on top of each sub-panel. Confidence interval (95%) is provided in stippling using a Monte Carlo test of 1000 random iterations.

Fig. S5: Same as Fig. S4 but using as predictand the simulations of SMHI-RCA4 nested onto the 8 GCMs.

S4CAST MPI-RCMs : MAXIMUM COVARIANCE ANALYSIS (MCA) LEADING MODES

Fig. S6: Same as Fig. S4 but using as predictand the simulations of MPI-ESM-LR driving four different RCMs.

Fig. S7: (a)-(h) Added value maps (colors, in $mm^2 day^{-2} std^{-2}$) for the individual model members (RCA4 vs. GCMs) in representing the ENSO-West Africa JAS precipitation Teleconnection (1979-2004). Positive values are highlighted with stippling. (i)-(l) Same as (a)-(b) but for the nested RCMs onto MPI (MPI-RCMs vs. MPI).

Fig. S8: (a)-(p) Pairs of homogeneous/heterogeneous regression maps for the leading mode of each GCM individual simulation between SST anomalies (predictor) from the equatorial Atlantic [60°W-20°E, 20°S-5°N] and precipitation anomalies (predictand) over West Africa [20°W-30°E, 0°-20°N]. Period: JAS 1979-2004. Explained variance provided in % on top of each sub-panel. Confidence interval (95%) is provided in stippling using a Monte Carlo test of 1000 random iterations.

Fig. S9: Same as Fig. S8 but using as predictand the simulations of SMHI-RCA4 nested onto the 8 GCMs.

Fig. S10: Same as Fig. S8 but using as predictand the simulations of MPI-ESM-LR driving four different RCMs.

15W 10W 5W

0 5E 10E

15E 20E 25E

(b) CNRM-CM5

(f) MIROC5

(g) MPI-ESM-LR

(d) GFDL-ESM2M

(h) NorESM1-M

Fig. S11: Same as Fig. S7 but for the AEM-WAM Teleconnection.

RCM Added Value (Di Luca et al. 2013; Meque and Abiodun 2015)

$$AV = (X_{GCM} - X_{OBS})^2 - (X_{RCM} - X_{OBS})^2$$

Colors – ensemble AV in average pcp (mm2/day2) Contours – ensemble AV in pcp std (mm/day) Stippling: 75% of individual models giving same AV sign

Contrasting results from GCMs-RCA4 and MPI-RCMs