Role of equatorial forcing in SST bias development in the South-Eastern Tropical Atlantic in a high resolution version of CNRM-CM CGCM

Katerina Goubanova, <u>Emilia Sanchez-Gomez</u> Claudia Frauen, Aurore Voldoire

TAV and PREFACE-GA2016, Paris, 28 nov - 2 dec 2016

Context and motivation

Mean SST bias in an ensemble of 39 models from CMIP5/historical

Progress and challenges:

- Systematic warm SST bias in S-E Tropical Atlantic (SETA) ٠
- Quick bias development (weeks to months) (*full-field initialized seasonal hindcasts*) ٠
- Different processes involved in SST errors: local/remote, atmosphere/ocean
- Model-dependent

Context and motivation

Methodology: analysis of model drift in seasonal hindcasts to study bias development

Model mean state **Model drift Observations** t=0 t=n

Goals:

1)What is the role of <u>remote forcing from the Equator</u> (westerly wind bias) in developing the warm SST error in the SETA ?

2)Is there an added value of <u>higher resolution</u> for simulating the SETA?

Model:

□ High and Low resolution version of CNRM-CM model

- HR: **ARPEGE (~50km)** (T359L31) and **NEMO ~0.25⁰** (ORCA025, 75VL)
- LR: **ARPEGE (~140km)** (T127L31) and **NEMO ~1**^o (ORCA1, 42VL)

Experiments:

CTRL-HR / CTRL-LR: full field initialized seasonal hindcasts

- Initialization from ERAI and GLORYS2v3
- Start date: 1 February
- 10 years: 2000-2009
- Three-members, 6 months lead time

□ TAUEQ (HR): wind stress from ERAI is replaced over the Equatorial Atlantic (5°S – 5°N)

1. CTRL-HR biases and their improvement in TAUEQ

--> CTRL-HR versus TAUEQ

SST bias evolution in CTRL-HR

2-months averaged evolution of the SST bias with respect to GLORYS2v3

2-months averaged evolution of the SST bias with respect to GLORYS2v3

Evolution of the error in subsurface temperature in respect to GLORYS2V3 *

Isotherme 20°C in the model
Isotherme 20°C in GLORYS2v3

Mean evolution of the equatorial wind stress (2°S- 2°N)

Shading : wind stress amplitude Vector: wind stress vector Contour: zonal wind stress

Evolution of the error in subsurface temperature in respect to GLORYS2V3 *

CTRL-HR

TAUEQ

SST bias in respect to GLORYS2V3

2-months averaged evolution of the SST bias with respect to GLORYS2v3

- Further analysis on processes involved to the bias development in CTRL-HR, TAUEQ and CTRL-LR
- Impact of model resolution

Analysis strategy

TAUEQ: improvement in the costal regions by ~50% (from mid-March) and in ATL3 by ~30% **LR**: significantly stronger bias in SBEN and in SETA in June-July

SETA region

PRE

Mixed-layer temperature tendency terms

TemperRATE = XY_Adv + Z_Adv + Atm.FORC + Vert.DIFF + ENTR + Res

LR: in general similar processes involved, in particular warm horizontal advection TAUEQ: warm horizontal advection disappears

❑ Mixed-layer temperature tendency terms

SBEN

TemperRATE = XY_Adv + Z_Adv + Atm.FORC + Vert.DIFF + ENTR + Res

LR: much smaller cold XYadv (Ekman transport/coastal upwelling) TAUEQ: cold contribution of XYadv(local upwelling) is stronger since there is no "compensation" by warm contribution of XYadv (remote forcing from the Equator)

Warm advection from the Equator

Warm advection from the Equator

Conclusions

- → Remote forcing from the equator contributes to ~50% of warm SETA bias in CNRM-CM model
- → This is due to anomalous warm horizontal advection from the Equator that penetrates southward of 25°S and could be associated with propagations of coastal trapped equatorial Kelvin waves
- → Restoring of the wind stress over the Equator leads to a general improvement of the equatorial mean state (thermocline slope, zonal current) and more realistic representation of the relative contributions of the different terms to the mixed-layer temperature budget in ATL3
- → Correction of the wind stress over the Equator results in local reducing of the SST bias by ~30% in the equator
- → In general LR and HR models show very similar evolution of the SST bias and similar associated processes. A significant improvement of the bias in HR is observed locally in the Southern Benguela due to better resolving of fine-scale processes associated with the coastal upwelling.

Thank you !

Add-on

PRE

❑ Mixed-layer temperature tendency terms

TemperRATE = XY_Adv + Z_Adv + Atm.FORC + Vert.DIFF + ENTR + Res

LR: in general similar processes involved TAUEQ: drastic modification of the ML heat budget, in particular vert.diff and atm.forcing

TAU30: SST bias

 \rightarrow Combination of the effects of TAU05 and TAUBE

TAUBE: SST bias

Errors in alongshore wind stress, Pa

- ✓ Local improving of SST during the first 3 months of hindcasts over SBEN (and in a much lower degree over SETA)
- ✓ Stronger bias in June-July in SBEN and SETA (compensation of errors in CTRL?)
- ✓ There is no remote impact to the Equatorial regions (ATL3 and ANGO) in term of SST

Initial bias: role of heat flux

Errors in net heat fluxes at surface, W/m2 (ref: TropFlux)

 Error in net heat flux at surface may contribute to the rapid initial bias development over SETA and SBEN but it doesn't explain slower initial bias development in ATL3/ANGO