

Origin of upwelled water in the Benguela system: source region, upwelling depth and propagation pathways

L. Siegfried, M. Schmidt

Leibniz Institute for Baltic Sea Research Warnemuende, Germany

TAV Paris, 29 Nov 2016

Introduction

South Atlantic - Central Water masses

- central water masses feed upwelling
- determine hydrographic conditions
- SACW: oxygen-depleted, nutrient-rich
- ESACW: oxygen-rich, nutrient-poor

Modelled mixing of tracers injected

- in the equatorial undercurrent (SACW, orange)
- near the Cape of Good Hope (ESACW, blue)
- after about 16 years of model integration
- summed over depth

Introduction

South Atlantic - surface currents

DEPTH (m) : -0.0009866 to 5700 (summed) TIME : 23-JUL-2015 12:00 JULIAN

Surface and near-surface currents and frontal zones. Simplified from Hardman-Mountford et al. (2003)

- NBUS Northern Benguela Upwelling System
 - AC Angola Current
- ABFZ Angola-Benguela Frontal Zone
 - BC Benguela Current

Regional circulation model

Methods

- based on Modular Ocean Model
- horizontal resolution: minimum grid cell size is about 8x8 km in the Namibian coastal region
- grid stretches towards model boundaries (18 km)
- vertical grid resolution: 3 m up to 500 m
- boundary values for sea-level and tracer concentration: cube92 product from the ECCO consortium
- atmospheric data: NCEP reanalysis and scatterometer data (QuikSCAT / ASCAT)

Regional circulation model

Methods

Regional circulation model

- corrected GEBCO topography
- model output: 5 d averages
- passive tracers:
 - dimensionless
 - between 0 and 1 (at release region)
 - following advection & diffusion
 - no impact on hydrographic fields

Upwelling depth

Upwelling depth

To study the upwelling depth 4 passive tracers are designed which represent horizontal cross sections through the South Atlantic.

Hart & Curie, 1960: $\rightarrow 200 \text{ m to } 300 \text{ m (CTD)}$ Toggweiler (submitted): \rightarrow signature of AAIW (Δ^{14} C)

Upwelling depth

	DUVO	ling	time
		עווו	11116
~	P		
		<u> </u>	

Passive	18°S		20°S			23°S	
tracer	200 m	$0 \mathrm{m}$	200 m	$0 \mathrm{m}$	340 m	$140 \mathrm{m}$	0 m
А		$5 \mathrm{d}$		$10 \mathrm{d}$			15 d
В		$70 \mathrm{d}$		$35 \mathrm{d}$		$15 \mathrm{d}$	$50 \mathrm{d}$
С	$240 \mathrm{~d}$	$720 \mathrm{d}$	$275 { m d}$	$415~{\rm d}$		$300 \mathrm{d}$	$370 \mathrm{d}$
D	$5385 \ d$	-	1060 d	-	175 d	$5150 \mathrm{~d}$	$5175 \ d$
	(14 a 275 d)		(2 a 330 d)			(14 a 40 d)	(14 a 65 d)
	shelf	surface	shelf	surface	outer shelf	inner shelf	surface

Table: Time span until tracer concentration exceeds 0.01 at shelf / surface

- tracer from 100 m: several days to surface
- \bullet tracer from $200\ m$: 1 to $2\ months$ to surface
- \bullet tracer from $300\ m$: 1 to 2 years to surface
- \bullet tracer from 550~m: only at 23°S to surface
- $\bullet\,$ tracer from $550\;m:$ at 20°S only at shelf but NOT at surface

Source region

Source region - passive tracers

Composite of two passive tracers

DEPTH (m): 97.5

DEPTH (m) : -0.0009866 to 5700 (summed) TIME : 23-JUL-2015 12:00 JULIAN

Source region

Time to reach the upwelling cells

How long does SACW need to reach the upwelling cells?

position	date	number of days	
		since model initialisation	
9°W, 2°S	Jul 1999		
11.4°E, 18°S	Feb 2001	$570 \mathrm{d}$	
12.2°E, 20°S	Mar 2002	960 d	$\downarrow 390~{\rm d}$
14.5°E, 23°S	Apr 2003	$1365 \mathrm{d}$	$\downarrow 405 \; \rm d$

How long does ESACW need to reach the upwelling cells?

position	date	number of days	
		since model initialisation	
16°E, 34°S	Jul 1999		
14.5°E, 23°S	Jun 2000	$315 \mathrm{d}$	
12.2°E, 20°S	Aug 2001	$765 \mathrm{d}$	$\downarrow 450 \; \rm d$
11.4°E, 18°S	Jul 2002	$1085 \mathrm{d}$	↓ 320 d.

To study propagation pathways several passive tracers are designed which represent 3 cross sections in the South Atlantic.

<u>5°S</u>

- mouth of Kongo river
- 3 vertical boxes
- 4 zonal boxes

<u>13°S and 17°S</u>

- 3 vertical boxes
- 2 zonal boxes
- 13°S: near Lobito, change in coastline direction
- 17°S: Kunene river, upwelling cell

Upwelled water in Kunene Cell (18°S)

LATITUDE : 18S TIME : 15-DEC-2015 12:00 JULIAN

Upwelled water in Kunene Cell (18°S)

12 tracers released at 5°S

- both tracers are released offshore at 5°S
- surface water is not significantly vertically mixed
- tracer from the open ocean is advected onto the shelf

Role of negative wind stress curl for meridional transport (Sverdrup balance)?

TIME : 14-DEC-2015 21:00 JULIAN

Wind stress curl

Kunene (18°S) and Central Namibian Cell (23 °S)

LATITUDE : 18S TIME : 15-DEC-2015 12:00 JULIAN

13S COAST subsurface

Tracer released at 13°S

LATITUDE : 18S TIME : 15-DEC-2015 12:00 JULIAN

Kunene (18°S) and Central Namibian Cell (23 °S)

LATITUDE : 18S TIME : 15-DEC-2015 12:00 JULIAN

LATITUDE: 18S TIME: 15.DEC.2015 12:00 IULIAN

- structure of the shelf determines position of poleward undercurrent
- shelf waves: maximum above shelf edge
- coastal Kelvin waves: maximum at coast

- Upwelling in the Northern Benguela upwelling system must be treated in 4 dimensions.
- $\bullet\,$ On shorter time scales upwellled water originates in depths smaller than $550\ m.$
- On decadal time scales even Intermediate Water feeds upwelling.
- Water from the EUC (SACW) takes 1.5 years to reach the northern Benguela upwelling system.
- Poleward transport of tropical water (SACW) does not only take place inside the coastal wave guide but to a substantial amount also in the open ocean.
- It is confirmed that the poleward undercurrent is located close to the coast or above the shelf edge in the northern Benguela upwelling system.

Acknowledgement

Thanks to

Bundesministerium für Bildung und Forschung my co-author, supervisors and colleagues

Thank you for your attention!

Passive tracer released in EUC - SACW

- shall represent SACW
- Source region:
 - $\lambda < 9^{\circ}W$
 - $|\varphi| < 2^{\circ}$
 - -200 m < z < -50 m
- area of investigation: northern Benguela upwelling system
- on $\sigma_0 = 26.2$ -level (Mercier 2003)

Summary - additional points

- upwelling in the Northern Benguela upwelling system must be treated in 4 dimensions
- poleward undercurrents can be found near the coastline in subsurface waters or deeper offshore above the shelf edge
- coastal jets and poleward undercurrents determine the meridional (North-South) transport near the coast, their strength varies seasonally depending upon the strength of the local wind patches
- its location varies seasonally and depends on shelf structure
- cross-shore Ekman transport takes place in the surface layer
- between 10°S and 30°S mesoscale eddies contribute to cross-shore transport
- export of equatorial waters to the BUS is not only controlled by advection on the inner shelf but by offshore advection of water
- surface water in the upwelling cells is only partly locally upwelled but also determined by water advected onto the shelf (e.g. through meridional transport of water)
- water from the EUC takes approximately 1.5 years to reach the Kunene Cell
- once it has reached the northern BUS it takes 390 d to reach the -II (00°C) --- I C....IL ---

NI -

Upwelling Cells - characteristics

Upwelling Cell	Geographical features	Forcing	External input	Hydrographic features
Kunene Cell	18°S narrow, steeply sloping shelf shelf edge at 610 m 50 km wide	Kunene wind cell permanent	river Kunene year-round water bearing	southern branch of Angolan gyre deflection of currents to the west
	pronounced shelf edge change in oritentation of coastline	esp. strong in Nov	seasonally variable run-off	linkage between tropical and subtropical Atlantic
Northern Namibian Cell	20°S gently sloping shelf shelf edge at 246 m wide 100 km hardly pronounced shelf edge	wind patch parallel to coast		filaments
Central Namibian Cell	23°S double shelf structure first shelf: linearly sloping first shelf edge at 150 m depth second shelf: sea mount second shelf edge at 350 m depth in total: 141 km wide	wind patch parallel to coast		filaments

Table: Characteristics of upwelling cells in the northern Benguela upwelling system

Passive tracer	Source depth
А	100 120 m
В	$200 \dots 300 \text{ m}$
С	$300 \dots 550 \text{ m}$
D	$550 \dots 650 \text{ m}$